



### Creedo

#### Scalable and Repeatable Extrinsic Evaluation for Pattern Discovery Systems

Mario Boley, Maike Krause-Traudes, Bo Kang, Björn Jacobs University of Bonn & Fraunhofer IAIS mario@realKD.org

#### Recently at Q&A time...



**Q:** This looks interesting, but is this really what *users* would want?

A: Well, I guess in order to really confirm that, we would need to test this *somehow* with real users.

**Q:** Yep, agreed. Thank you.

### Extrinsic evaluation can support ultimate value of contributions



# Extrinsic means: "not depending on theory used for development cycle"



### Poll among ECMLPKDD authors: half skipped potentially useful studies



#### Details at http://www.realkd.org/dm-userstudies/ecmlpkdd-authorpoll-march2015/

# High costs are dominant reason for skipping on "study opportunity"



# High costs are dominant reason for skipping on "study opportunity"

No added benefit of user study over automatized/formal evaluation

| 5      |                                             |                          |              |                   |          |            |    |    |    |
|--------|---------------------------------------------|--------------------------|--------------|-------------------|----------|------------|----|----|----|
| Unclea | ar how to                                   | recruit sui <sup>.</sup> | table group  | o of partici      | pants    |            |    |    |    |
|        |                                             |                          |              |                   | 55       |            |    |    |    |
| Cost o | f developi                                  | ing study c              | lesign       | 46.6666666        | 7        |            |    |    |    |
| Cost o | f embedd                                    | ing contrib              | oution in ac | cessible UI<br>40 | l        |            |    |    |    |
| Cost o | f organiziı                                 | ng actual s              | tudy         | _                 | 6        | 3.33333333 |    |    |    |
|        | f evaluatii<br><sup>15</sup><br>rity of out | -                        | acceptanc    | e by peers        |          |            |    |    |    |
|        | 15                                          |                          |              |                   |          |            |    |    |    |
| 0      | 10                                          | 20                       | 30           | 40                | 50       | 60         | 70 | 80 | 90 |
|        |                                             |                          |              | % OT "Y           | es"-resp | ondents    |    |    |    |

100

### Creedo's major contributions are...

• Allows definition of **reusable study designs** 

 Elements focus on scalable evaluation in application context

• Automatizes process

# A study is a process for providing evidence in favor or against...

Hypothesis:

"Users can solve a certain class of analysis tasks better with a specific target system than with other control systems."

# A study is a process for providing evidence in favor or against...

#### Hypothesis:

"Users can solve a certain class of analysis tasks better with a specific target system than with other control systems."

#### Example:

"Users can discover a set of interesting patterns faster using a FORSIEDbased association discovery process than when using a conventional" association discovery process."

\*based on a static interestingness measure that is oblivious to prior and gained knowledge

## Data analysis systems are represented by Creedo analytics dashboards



### Algorithms can be integrated via the realKD library



1. Introduction

In this paper, we tackle the important problem of discovering interesting patterns from a given input dataset.  $q(x) = \frac{1}{|D(x)|} (p_0 - p_x)^2$ 

for each  $d \in D$ if  $x \in D$  then  $\widehat{D}(x) \leftarrow \widehat{D}(x) + 1$ 





## User perspective on task are natural language instructions

| Analysis task instructions                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| As a new employee of the Data Science Department of the government of <b>The Plain</b> , you have to get familiar with the socio-economics status of your country. Go on and use our data mining tool to discover key phenomena from <b>The Plain</b> 's socio-economic data. The data consists of the socio-economic records of 1000 representative inhabitant samples of your country. |  |  |  |  |  |
| The data mining tool will propose statements about the data, and measures associativity among the statements. Such information is summarized in graphic representations ( <b>patterns</b> ) like the figure below:                                                                                                                                                                       |  |  |  |  |  |
| Desitively Associated Attribute Values                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Annual Income=very high (0.0710)<br>Annual Health Spend=high (0.2820)<br>Happiness=Unhappy (0.3720)                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| occur together in 53 rows (freq. 0.053)<br>compared to 7.4 rows, which are expected assuming independence (lift 0.023)                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| so icg probability                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| <ul> <li>Sec.1 states whether the statements are positively or negatively associated.</li> </ul>                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| <ul> <li>Sec.2 lists the considered statements, along with the frequency (proportion of<br/>inhabitants) that each individual statement holds true.</li> </ul>                                                                                                                                                                                                                           |  |  |  |  |  |
| <ul> <li>Sec.3 visualizes the difference between the expected frequency (blue bar) and the actual frequency (red bar) of the statements. The larger the difference the stronger the positive/negative association is.</li> </ul>                                                                                                                                                         |  |  |  |  |  |







### Task also defines elementary attributes of results

e. Submit











#### Assignment logic can control biases and balance confidence









### Assignment logic can control biases and balance confidence











#### Creedo organizes study process







#### mario@realKD.org